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1 Context

We consider a random vector X = (X1, . . . , Xp) ∈ Rp whose joint distribution is
described by a multivariate Gaussian distribution. Without loss of generality, we
assume that E = 0p. The variance-covariance matrix is denoted by Σ and we have
N (0p,Σ).

We consider the conditional dependency graph G = (V,E) such that V =
{1, . . . , p} and (i, j) ∈ E whenever there is a significant conditional dependency
between variable Xi and Xj . Thanks to the Gaussian assumption, this boils down
to unraveling significant non zero entries in the inverse covariance matrix, a.k.a.
the precision matrix Ω = Σ−1. In other words, as seen in the course,

G : (i, j) /∈ E ⇔ Ωij = 0.

We would like to infer the conditional dependency graph G from a data set that
possibly enters the high-dimensional data setup, that is, n < p. More formally,
we consider a sample (X1, . . . , Xn) of n independent copies of X. We denote by
X the n× p data matrix, the ith row of which contains the data associated with
individual i, that is, Xi.

2 Questions

2.1 Preliminaries

1. Multivariate Gaussian log-likelihood. Derive the data log-likelihood as a
function of the parameter Ω and the MLE estimator.

2. Gaussian vector and linear regression. Write the conditional distribution
of Xj |X\j . Show that Xj can be expressed as a linear combination of the
{Xk, k 6= j} plus some Gaussian noise, that is, a linear regression model.

3. GGM and linear regression. In this model, show that the regression coeffi-
cients depends on Ω only. Recast the network reconstruction problem as p
independent Lasso problems.
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2.2 Simulating GGM

1. Multivariate Gaussian sample. Write a function rmvnorm(n,mu,Sigma)

that draws n samples of a Gaussian vector with parameters µ and Σ and
sends back a n × p matrix X. To this end, remark that V(ZΣ1/2) where
Z ∼ N (0, Ip) has the same covariance as X.

2. From adjacency to precision matrices. Write a function getPrecision(A)

that takes as an argument a binary symmetric adjacency matrix and com-
putes a symmetric positive-definite matrix with the same sparsity pattern.
You can use the property of positive-definiteness own by diagonal dominant
matrices and draw Ω such that

Ω = A×min(eig(A)) + Ip × (cst. + |min(eig(A))|).

3. From adjacency matrices to multivariate Gaussian samples. By means of
the two previous questions, write a function rggm(n,A) that returns a
matrix of Gaussian data.

2.3 Learning GGM

1. Optional, depending on the timing. Thanks to Section 2.1, write a function
neighborhood.selection(X,lambda) that learns the sparsity pattern of
the precision matrix of X by solving p independent Lasso problems 1. The
post-symmetrization can be done either by means of a ’AND’ or a ’OR’
rule.

2. Make some experiments to assess the performances of the neighborhood
selection method and the graphical Lasso by computing ROC curve. You
may use the implementations provided by the package huge.

2.4 Application to E. coli regulatory network

Consider the network and expression data found in the Ecoli.data dataset
from the sand package. Symmetrize the network and remove the isolated nodes.
Then, infer the network from the expression data. Compare the inferred network
to the reference network.

1. Use the package glmnet to solve a Lasso problem.
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