I spread most of my code as R packages, with underlying routines in C/C/++ relying on the great Rcpp package and the outstanding armadillo library.

Dedicated pages

References

  1. Chiquet J, Mariadassou M, Robin S: PLNmodels: Poisson lognormal models, 2017
    download
  2. Chiquet J, Dervieux V, Rigaill G: aricode:a package for efficient computations of standard clustering comparison measures, 2017
    download
  3. Brault V, Chiquet J: blockseg: two Dimensional Change-Points Detection, 2016

    Segments a matrix in blocks with constant values. The underlying algorithm is a Lars-type algorithm where all the matrix operation can be computed explicitly.

    download
  4. Bouveyron C, Chiquet J, Latouche P, Mattei P-A: spinyReg: Sparse Generative Model and Its EM Algorithm, 2015

    Implements a generative model that uses a spike-and-slab like prior distribution obtained by multiplying a deterministic binary vector. Such a model allows an EM algorithm, optimizing a type-II log-likelihood.

    download
  5. Chiquet J: SPRING: Structured selection of Primordial Relationships IN the General linear model, 2014

    This package fits multivariate regression models using sparse conditional Gaussian graphical modeling with Laplacian regularization.

    download
  6. Gutierrez P, Rigaill G, Chiquet J: Fused-Anova, 2013

    This package adjusts a penalized ANOVA model with Fusion penalities, i.e. a sum of weighted l1-norm on the difference of each coefficient. The fitting procedure is accompanied by a highly efficient cross-validation method.

    download
  7. Chiquet J: Quadrupen: Sparsity by Worst-Case Quadratic Penalties, 2012

    This package fits classical sparse regression models with efficient active set algorithms by solving quadratic problems. It also provides a few methods for model selection purposes (cross-validation, stability selection).

    download
  8. Chiquet J: Scoop: Sparse Cooperative Regression, 2011

    This R package fits coop-Lasso, group-Lasso and tree-group Lasso variants for linear regression and logistic regression. The cooperative-Lasso (in short, coop-Lasso) may be viewed as a modification of the group-Lasso penalty that promotes sign coherence and that allows zeros within groups.

    download web page
  9. Chiquet J, Grasseau G, Ambroise C, Charbonnier C: SIMoNe: Statistical Inference for MOdular NEtworks, 2010

    SIMoNe (Statistical Inference for MOdular NEtworks) is an R package which implements the inference of co-regulated networks based on partial correlation coefficients from either steady-state or time-course transcriptomic data. This package can deal with samples collected in different experimental conditions. In this particular case, multiple related graphs are inferred simultaneously. The underlying statistical tools enter the framework of Gaussian graphical models (GGM). Basically, the algorithm searches for a latent clustering of the network to drive the selection of edges through an adaptive l1-penalization of the model likelihood.

    download web page